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Abstract

Rounding methods are common techniques in many statistical offices to protect sensitive
information when publishing data in tabular form. The classical versions of these methods
do not consider protection levels while searching patterns with minimum information loss,
and therefore typically the so-called auditing phase is required to check the protection of
the proposed patterns. This paper presents a mathematical model for the whole problem of
finding a protected pattern with minimum loss of information, and proposes a branch-and-cut
algorithm to solve it. It also describes a new methodology closely related with the classical
controlled rounding methods but with several advantages. The new methodology is named
Cell Perturbation and it leads to a different optimization problem which is simpler to solve
than the previous problem. This paper presents a cutting-plane algorithm for finding an
exact solution of the new problem, which is a pattern guaranteeing the same protection level
requirements but with smaller loss of information when compared with the classical controlled
rounding optimal patterns. The auditing phase is unnecessary on the solutions generated by
the two algorithms. The paper concludes with computational results on real-world instances
and discusses a modification in the objective function to guarantee statistical properties in
the solutions.

Keywords: Statistical Disclosure Control; Controlled Rounding; Integer Linear Programming

1 Introduction

Statistical agencies are often required by law or policy to protect the confidentiality of the informa-

tion that they collect from persons, businesses, or other units. The microdata is the collection of

all the individual responses, and a statistical table is the aggregation of one variable in accordance
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by the British “Office of National Statistics” (IT-03/0763) and by the European Research project IST-2000-25069
entitled “Computational Aspects of Statistical Confidentiality” (CASC)
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with other variables and including marginal sums. Before releasing statistical tables (or micro-

data files), these agencies use a variety of statistical methods to protect their sensitive data and

to ensure that the risk of disclosure is controlled and very small. In essence, statistical agencies

protect the confidentiality of the data that they collect (i.e., microdata) by restricting the amount

of information in tabular data products that they release. Therefore, a common characteristic of

all the methodologies is that they reduce the information to limit the disclosure risk, but with

the aim of minimizing the loss of information. There are methodologies to protect microdata and

others to protect statistical tables. This paper concerns only methodologies to protect statistical

tables directly, i.e. modifying the table itself and not the original microdata. See, e.g., Duncan,

Fienberg, Krishnan, Padman and Roehrig [7] for other perturbation techniques where some re-

spondent contributions (i.e., values in the original microdata) are modified, such as the addition

of random noise by Evans, Zayatz and Slanta [10], data swapping by Fienberg, Steele and Makov

[11], and Markov perturbation by Duncan and Fienberg [8]. We refer the reader to Willenborg

and de Waal [23] for a wider introduction to the Statistical Data Protection.

The importance of protecting tabular data has been clearly stated by governments awarding

contracts to conduct research and issue reports on Disclosure Limitation Methods for Tabular

Data Protection. For example, the National Institute of Statistical Sciences (www.niss.org) is

supporting the U.S. project entitled “Digital Government”, and EUROSTAT is coordinating the

E.U. project entitled “Computational Aspects on Statistical Confidentiality”, both addressing the

protection of tabular data (among other topics). An important observation is that, in practice,

many statistical offices consider the published statistical tables as the “end product” of the data

production process, presenting the final result of the data analysis that is contained in such a table,

and thus it is not assumed that there will be a secondary statistical analysis on the released data.

This hypothesis is based on the fact that most of the users are interested only in the value of a

very specific cell, and this opinion is supported by experts of many statistical agencies (Statistics

Netherlands, German Federal Statistical Office, etc.). For the purpose of a statistical analysis,

these statistical agencies do nowadays offer other ways of accessing to data, like the direct or

remote access to the part of the microdata file at secure sites (see, e.g., Dunne [9]).

In the area of Statistical Disclosure Limitation experts typically distinguish two different prob-

lems. The primary problem concerns the problem of identifying the sensitive data, i.e., the cell

values corresponding to private information that cannot be released within a prescribed exactitude.

The secondary problem (also named the complementary problem) consists in applying methods to

guarantee some “protection requirements” while minimizing the “loss of information”. Even if
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Section 2 illustrates some standard rules to address the primary problem, this paper concerns only

the secondary problem, and in particular it proposes a precise definition of the two main concepts:

protection requirements and loss of information. The most popular methodologies for solving

the secondary problem are variants of the well-known Cell Suppression and Controlled Rounding

methods. These two fundamental methodologies will be next described. Nevertheless, the differ-

ent methodologies are usually applied without sharing common hypothesis by practitioners, thus

making a comparison very difficult even on the same data. Even more, in practice, some imple-

mentations cannot inherently guarantee the protection requirements and a great computational

effort must be applied to check the proposed output before publication. This checking is called

the Disclosure Auditing phase and basically it consists in computing lower and upper bounds on

the original value for each sensitive cell; in the literature there are several techniques to perform

this third phase, including linear and integer programming, the Frechet and Bonferroni bounds,

and the Buzzigoli and Giusti’s shuttle algorithm (see, e.g., Duncan, Fienberg, Krishnan, Padman

and Roehrig [7] for references and generalizations of these techniques).

Cell Suppression is a methodology that allows the practitioner to unpublish the values in some

cells while publishing the original values of the others. In particular, once the primary problem

was solved, the cells containing sensitive information must be clearly unpublished and they are

the primary suppressions. Due to the existence of the total marginals in a table, other cells must

be also unpublished to guarantee protection of the values under the primary cells, leading to the

secondary suppressions. They must be identified by solving the so-called Cell Suppression Problem,

which is a very interesting combinatorial problem widely addressed in the literature. Apart from

satisfying the protection requirements, the output of the problem must have a minimum loss of

information, which for this methodology could be considered as the sum of the unpublished cell

values. See, e.g., [23] for more details on this methodology.

Controlled Rounding is an alternative classical methodology that has not been extensively

analysed in the literature, and the aim of this paper is to add new results to fill this gap. When

applying a rounding procedure the experts are given a base number and they are allowed to

modify the original value of each cell by rounding it up or down to a near multiple of the base

number. An output pattern must be associated with the minimum loss of information, which for

this methodology can be considered as the distance between the original and the modified tables.

In the Random Rounding version the experts decide to round up or down each cell by considering a

probability that depends on its original cell value, without taking care of the marginal cell values.

Therefore, the Random Rounding produces output tables where the marginal values are not the

3



sum of their internal cells, which is a disadvantage of this rounding version. Another version is the

so-called Controlled Rounding, where probabilities are not considered and the expert should round

up or down all cell values such that all the equations in the table hold in the published table. In

the so-called zero-restricted Controlled Rounding the original values which are already multiple

of the base number cannot be modified. Even not considering protection level requirements,

a Controlled Rounding solution may not exist for a given table (e.g., Causey, Cox and Ernst

[2] showed a simple infeasible 3-dimensional instance). Kelly, Golden and Assad [17] proposed

a branch-and-bound procedure for the case of 3-dimensional tables, and Fischetti and Salazar

[12] extended this procedure to 4-dimensional tables. Heuristic methods for finding solutions of

this problem on multi-dimensional tables have been proposed by several authors, including Kelly,

Golden and Assad [17, 19]. The problem was first introduced by Bacharach [1] in the context of

replacing nonintegers by integers in 2-dimensional tabular arrays, and actually it arises in several

other applications. It was introduced in a statistical context by Cox and Ernst [3]. In all these

articles, the protection requirements are not considered and, therefore, they do not address the real

problem arising from the Statistical Disclosure Limitation application. Indeed, a statistical office

applying these incomplete approaches must also solve the auditing problem to check the protection

of the output (and repeating the procedure when a protection level requirement is violated). We

will address in this work the complete problem of finding a solution of the controlled rounding

methodology.

In the literature there are several methodologies to protect tables by data perturbation (see,

for example, the addition of random noise by Evans, Zayatz and Slanta [10], data swapping by

Fienberg, Steele and Makov [11], and Markov perturbation by Duncan and Fienberg [8]) but, as

far as we know, they all concern the direct modification of the microdata and, therefore, there is

less control on the final protection interval of each cell in the published pattern, and less control

on the error added to some aggregated cells. Moreover, as pointed out in Willenborg and De Waal

[23], “adding noise to cell values of a table does not guarantee that the additivity of the table is

preserved, and if preservation of additivity is important then one should look for other methods”.

This paper shows how Operations Research can help in Statistical Data Protection by presenting

a methodology to address the problem of perturbing the cell values while preserving additivity.

The paper presents the complete optimization problem of finding an output of the Controlled

Rounding methodology on any type of tables including k-dimensional, linked and hierarchical

tables. Solutions of this problem implicitly guarantee the required protection for different sensitive

cells and against different attackers, thus saving the effort of solving the Disclosure Auditing
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problem. Section 2 introduces the main concepts of the Statistical Disclosure Control problem in

a general context. Section 3 considers the well-known Controlled Rounding Methodology, presents

an integer linear mathematical model, and describes a branch-and-cut algorithm for the exact

solution. Since the problem is NP-hard (and very difficult to solve in practice) Section 4 proposes

an alternative methodology called Cell Perturbation with the advantage that the optimization

problem can be solved in polynomial time through a cutting-plane approach which is also detailed.

Results from computational experiments using the proposed methods are analyzed in Section 5.

Section 6 presents a variant of the whole procedures to guarantee that the optimal solutions are

also unbiased. The paper ends with some conclusions in Section 7.

This work has been presented in several seminars on Disclosure Limitation Methods (Ply-

mouth, April 2002; Ottawa, May 2002; Washington, June 2002; London, August 2003), and the

concepts and algorithms are being used to develop the τ -ARGUS software package for tabular

data protection, an output of the CASC research project (see, e.g., Hundepool [15]).

2 General Situation

A statistical agency is typically provided with a set of n values ai for i ∈ I := {1, . . . , n}. Vector

a = [ai : i ∈ I] is known as “nominal table” and satisfies a set of m equations
∑

i∈I mijyi = bj for

j ∈ J := {1, . . . , m}. For convenience of notation the linear system will be denoted by My = b,

thus Ma = b holds. Each solution y of My = b is called congruent table. Matrix M (with n

columns representing the cells and m rows representing the equations) has elements mij typically

in {−1, 0, +1} with one −1 per row associated to the marginal-cell variable, while vector b is

typically the zero vector. The table in Figure 1 is a 2-dimensional table consisting in n := 16 cells

and m := 8 equations (one from each row and from each column in the table), hence M has two

nonzero elements per column. When the table is a 2-dimensional table, then M is the edge-node

matrix of a bipartite graph, thus a congruent table can be represented as a flow circulation in a

network and some tools from Graph Theory can be applied (see Cox [5]). This is not the case

when M is associated to a more complex table (e.g., a 3-dimensional table). Observe that also

multi-dimensional tables can be described by a general system My = b, where y represents the

cell values and the equations define the marginal totals in the table. Since all the here-proposed

ideas are based on the general system My = b, without any assumption on the structure of the

matrix M , then these ideas apply to any type of multi-dimensional table (including hierarchical,

linked and other structured tabular data).

Statistical tables typically contain sensitive data, i.e., information that cannot be disclosed since
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A B C Total
Activity I 20 50 10 80
Activity II 8 19 22 49
Activity III 17 32 12 61
Total 45 101 44 190

Figure 1: Investment of enterprises by activity and region.

they show confidential information on particular respondents. The sensitive cells in a tabular data

are typically determined by common-sense rules. In the literature and in the practice of statistical

offices there are many different rules; see, for example, [23]. As an illustration we next point out the

so-called dominance rule. We are given the microdata from which the table is computed, and two

input numbers α and β (for example, α := 80 and β := 3). Whenever the biggest β respondents

from the microdata contributing to value ap in cell p of the table produce more than α percentage

of the total value ap, then cell p is classified as sensitive. This rule is widely known and used by

statistical agencies, even if there are some recent critiques on this class of linear sensitivity rules

(see, e.g., Robertson and Ethier [20], and Domingo-Ferrer, Torra, Mateo-Sanz and Oganian [6]).

Another widely accepted sensitivity measure is what is called the prior-posterior rule, based on

two integer parameters γ and δ with γ < δ: assuming that, prior to the publication of the table,

an intruder can estimate the contribution of every other respondent to within δ percent, a cell is

considered sensitive if the intruder can estimate the contribution of an individual respondent to

that cell to within γ percent posterior if the cell value is published. No matter how the primary

problem is solved, we denote the subset of sensitive cells by P . In the example represented in

Figure 1, the cell in Activity II and Region C is assumed to be a sensitive cell to be protected

because (say) it is publicly known that there is only one respondent in Region C dedicated to

Activity II.

In a general situation, all the sensitive cells in a table must be protected against a set of

attackers. The attackers are the intruders or data snoopers that will analyze the final product

data and will try to disclose confidential information. They can also be coalitions of respondents

who collude and behave as single intruders. The aim of the Disclosure Limitation Methods is to

reduce the risk of them succeeding. The set of attackers will be denoted by K. Each attacker

knows the set of linear system My = b plus extra information that bound each cell value. For

example, the simplest attacker is the so-called external intruder knowing only that unknown cell

values are, say, nonnegative. Other more accurate attackers know tighter bounds on the cell values,

and they are called internal attackers. For example, an internal attacker could be a respondent

that had contributed to cell i with, say, 10 units; then he/she knows that yi ≥ 10, while the
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external attacker only knows yi ≥ 0. If the internal attacker also knows that he/she is the only

contributor to cell i with value 10, then 10 ≤ yi ≤ 10 when attacking the output data. In general,

attacker k is associated with two bounds lbk
i and ubk

i such that ai ∈ [lbk
i . . . ubk

i ] for each cell i ∈ I.

The literature on statistical disclosure control (see, for example, Willenborg and de Waal [23])

typically addresses the situation where |K| = 1, thus protecting the table against the external

intruder with only the knowledge of the linear system and some external bounds; nevertheless this

is a simplification of the real problem in Disclosure Limitation and statistical offices are interested

in protecting tables against several intruders (see, for example, Jewett [16]).

To protect the sensitive cell p containing value ap in the input table, the statistical office is

interested in publishing an output containing several congruent tables, including not only the

original nominal table but also others so that no attacker can disclose the private information

ap (neither a narrow approximation). The output of a Disclosure Limitation Method is generally

called a pattern, and it can assume a particular structure depending on the methodology considered.

The sections of this paper deal with two methodologies, and hence illustrate different patterns. In

all cases they share the common definition of “protection” defined as follows.

The congruent tables associated to a pattern must differ so that each attacker analysing the

pattern will not compute the original value of a sensitive cell within a narrow approximation. For

each potential intruder, the idea is to define a protection range for p and to demand that the

a-posteriori protection be such that any value in the range is potentially the correct cell value. To

be more precise, by observing the published pattern, attacker k will compute an interval [yk
p
. . . yk

p]

of possible values for each sensitive cell p. The pattern will be considered valid to protect cell p

against attacker k if the computed interval is “wide enough”. To set up the definition of “wide

enough” in a precise way, the statistical office gives three input parameters for each attacker k and

each sensitive cell p with nominal value ap:

• Upper Protection Level: it is a number UPLk
p representing a desired lower bound for yk

p−ap;

• Lower Protection Level: it is a number LPLk
p representing a desired lower bound for ap− yk

p
;

• Sliding Protection Level: it is a number SPLk
p representing a desired lower bound for yk

p−yk
p
.

The values of these parameters can also be defined by using common-sense rules. For example,

simple values for the protection levels are percentages of the nominal value of the cell (for example,

20%, 15% and 40%, respectively). In more sophisticated situations where intruder k is an original

respondent (i.e., an internal attacker), the protection levels could be chosen to be proportional to
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his/her contributions sk
p to the nominal value of the cell ap and/or to the complement ap− sk

p (see,

e.g, Sande [21]). Of course, an elementary assumption is that

lbk
p ≤ ap − LPLk

p ≤ ap ≤ ap + UPLk
p ≤ ubk

p

and

ubk
p − lbk

p ≥ SPLk
p,

for each attacker k and each sensitive cell p. For notational convenience, let us also define absolute

protection levels and relative nominal bounds:

lplkp := ap − LPLk
p,

uplkp := ap + UPLk
p,

LBk
i := ai − lbk

i ,

UBk
i := ubk

i − ai.

In the example represented in Figure 1 the statistical office could be interested in protecting

the sensitive cell (Activity II, Region C) against one attacker with a lower protection level of 10

units, an upper protection level of 12 units, and a sliding protection level of 0 units. Figure 2 gives

four different patterns, each one coming out from a different methodology. Pattern (a) corresponds

to the classical Cell Suppression Methodology (see, e.g., [13]) and Pattern (b) is an output of the

recent Interval Publication Methodology (see, e.g., [14]). Pattern (c) is a solution from the classical

Controlled Rounding Methodology described in Section 3 and Pattern (d) is a solution from the

new Cell Perturbation Methodology introduced in Section 4.

Given a pattern, the mathematical problems of computing values yk
p

and yk
p are known as

attacker problems for cell p and attacker k. The overall problem of solving the attacker problems

for all cells is called Disclosure Auditing Problem, which should not be confused with the Disclosure

Auditing Phase mentioned in Section 1 and which is an unnecessary phase for the methodologies

proposed in this paper since they will implicitly guarantee the protection requirements on the

output pattern. The attacker problems associated with cell p and attacker k can be formulated

as two Linear Programming (LP) models on an array of variables y = [yi : i ∈ I] representing a

table. Indeed, an attacker problem is

yk

p
:= min yi

subject to
My = b

lbk
i ≤ yi ≤ ubk

i for all i ∈ I,
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A B C Total
Activity I 20 50 10 80
Activity II * 19 * 49
Activity III * 32 * 61
Total 45 101 44 190

(a) Cell Suppression pattern.

A B C Total
Activity I [18 . . . 24] 50 [6 . . . 12] 80
Activity II [4 . . . 10] 19 [20 . . . 26] 49
Activity III 17 32 12 61
Total 45 101 44 190

(b) Interval Publication pattern.

A B C Total
Activity I 20 50 10 80
Activity II 10 20 20 50
Activity III 15 30 15 60
Total 45 100 45 190

(c) Controlled Rounding pattern (base 5).

A B C Total
Activity I 20 50 10 80
Activity II 7 16 26 49
Activity III 18 35 8 61
Total 45 101 44 190

(d) Cell Perturbation pattern (base 5).

Figure 2: Four different patterns.

9



plus a set of additional constraints that make y feasible in accordance with the published pat-

tern. The precise additional constraints depend on the structure of the pattern, and therefore on

the considered methodology. The other attacker problem is obtained by replacing the objective

function with yk
p := max yi. Section 3 of this paper shows the precise attacker problems for the

Controlled Rounding methodology and Section 4 for the Cell Perturbation methodology.

Finally, among all possible valid patterns, the statistical office is interested in finding one with

minimum information loss. The information loss of a pattern is intended to be a measure of the

number of congruent tables in the pattern. Indeed, a valid pattern must always allow the nominal

table to be a feasible congruent table, but it must also contain other different congruent tables

so as to keep the risk of disclosure controlled. For example, when the pattern contains only the

original table (because there is no sensitive data to be protected) then the loss of information is

clearly zero. The precise definition of loss of information depends on the structure of the pattern,

and hence on the methodology to be considered. In practice, since it is not always easy to count

the number of congruent tables in a pattern from the point of view of an intruder k, the loss of

information of a pattern is replaced by the sum of the loss of information of its cells. In this case,

the individual cost for cell p is generally proportional to the difference between the worse-case

situations (i.e., to yk
p − yk

p
), it is proportional to the number of respondents contributing to the

cell value ap, or it is simply a positive fixed cost when ap is not published (i.e., when yk
p − yk

p
> 0).

It could be interesting to use a definition of loss of information for a pattern given by a distance

between the original table and, for example, the most-probable table for the intruder k among the

congruent ones with the final pattern, but this is not an easy task without knowing the probability

distribution of yp in [yk
p
. . . yk

p].

In practice most of the available software is based on techniques for finding “good” patterns

with no inherent guarantee on the protection level requirements, i.e. not necessarily valid (see, for

example, [7]). Therefore, it is necessary to check the proposed pattern before it is made public

by solving the Disclosure Auditing Problem, and to try a different technique when the result is

negative. It is well-known (see, for example, Duncan, Fienberg, Krishnan, Padman and Roehrig

[7]) that auditing a pattern could consume many computing resources. In the next sections we

introduce precise methodologies to find a valid pattern (if any exists) with minimum (or near-

minimum) information loss, hence the Disclosure Auditing Phase is not required.
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3 Controlled Rounding Methodology

In Controlled Rounding Methodology we are provided with an input base number ri for each cell

i. In practice, the statistical office uses a common base number ri for all cells, but the method

can also be applied when there are different base numbers, as required by some practitioners (e.g.,

when protecting some hierarchical tables, bigger base numbers are preferred on top levels than on

low levels).

Let us denote by baic the multiple of ri obtained by rounding down ai, and by daie the mul-

tiple of ri obtained by rounding up ai. To follow the well-accepted zero-restricted version of the

Controlled Rounding Methodology, if ri is such that baic = daie then we redefine ri := 0, thus

ri = daie − baic for all i ∈ I.

A pattern in the Controlled Rounding Methodology is a congruent table v = [vi : i ∈ I] such

that

vi ∈ {baic, daie}. (1)

Figure 2(c) gives an example of pattern when ri := 5 (i ∈ I) for the instance in Figure 1. The

values ri are published with the output pattern by the statistical office, thus they are assumed to

be known by the attackers. The feasible region for the attacker problems associated with attacker

k is defined by
My = b

vi − ri ≤ yi ≤ vi + ri for all i ∈ I

lbk
i ≤ yi ≤ ubk

i for all i ∈ I.

The natural concept of “loss of information” of a cell is defined as the difference between the

nominal value and the published value, and then the loss of information of a pattern is the sum of

all the individual loss of information:

δ(v, a) =
∑
i∈I

|vi − ai| (2)

We now present a mathematical model for the combinatorial problem of finding a protected

controlled rounding pattern with minimum loss of information, and then we describe an algorithm

for solving this model. The optimization problem is refereed as Controlled Rounding Problem

(CRP).

3.1 Mathematical model

Let us consider a binary variable xi for each cell i, representing

xi =

{
0 if vi = baic,
1 if vi = daie,
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i.e., xi = 1 if and only if the published value vi is obtained by rounding up ai. Note that when a

solution xi is given, then the published table is determined by vi := baic + rixi for all i ∈ I, and

therefore the attacker problems for a given pattern [xi : i ∈ I] have a feasible region defined by

My = b
baic+ rixi − ri ≤ yi ≤ baic+ rixi + ri for all i ∈ I

lbk
i ≤ yi ≤ ubk

i for all i ∈ I.



 (3)

The loss of information of a cell i can now be written as a constant when xi = 0, plus a (positive

or negative) parameter wi if xi = 1. For example, if wi = daie+ baic − 2ai, then wi represents the

cost of rounding up instead of rounding down from value ai. Then, the loss of information (2) of

the pattern v defined by [xi : i ∈ I] is a constant plus
∑

i∈I wixi.

The CRP is to find a value for each xi such that the total loss of the information in the released

pattern is minimized, i.e.:

min
∑
i∈I

wixi (4)

subject to, for each sensitive cell p ∈ P and for each attacker k ∈ K,

• the upper protection requirement must be satisfied, i.e.:

max {yp : (3) holds } ≥ uplkp (5)

• the lower protection requirement must be satisfied, i.e.:

min {yp : (3) holds } ≤ lplkp (6)

• the sliding protection requirement must be satisfied, i.e.:

max {yp : (3) holds } −min {yp : (3) holds } ≥ SPLk
p (7)

Finally, each variable must assume value 0 or 1, i.e.:

xi ∈ {0, 1} for all i ∈ I. (8)

Mathematical model (4)–(8) contains all the requirements of the statistical office (in accordance

with the definition given in Section 2), and therefore a solution [x∗i : i ∈ I] defines an optimal

protected controlled rounding pattern. The inconvenience is that it is not an easy model to be

solved, since it does not belong to the standard (Mixed) Integer Linear Programming (ILP). In fact,

the existence of optimization problems as part of the constraints of a main optimization problem
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classifies the model in the so-called “Bilevel Mathematical Programming”, which today is not

provided with effective solution algorithms. Observe that a drawback of model (4)–(8) is not the

number of variables, which is at most the number of cells, both for the master optimization problem

(first optimization level) and for each subproblem (second optimization level). The inconvenience

of model (4)–(8) is the fact that there are optimization problems nested in the two levels. A way

to avoid this inconvenience is to look for a transformation into a classical ILP model, as it is next

done.

Condition (5) can be replaced by the existence of a congruent table [fkp
i : i ∈ I] such that it is

feasible (i.e., it satisfies (3)) and it guarantees the upper protection level requirement, i.e.:

fkp
p ≥ uplkp.

In the same way, the optimization problem in condition (6) can be replaced by the existence of a

congruent table [gkp
i : i ∈ I] such that it is also feasible (i.e., it satisfies (3)) and it guarantees the

lower protection level requirement, i.e.:

gkp
p ≤ lplkp.

Finally, the two optimization problems in condition (7) can be replaced by the above congruent

tables if they guarantee the sliding protection level, i.e.:

fkp
p − gkp

p ≥ SPLk
p.

Figure 3 shows a first attempt to have an ILP model, where xi, f
kp
i , gkp

i are the variables.

As mentioned by Fischetti and Salazar [13] on a similar model for the Cell Suppression Method-

ology, an important disadvantage of model in Figure 3 is the large number of variables even for

small instances. A way to skip this disadvantage is by projecting away the continuous variables fkp
i

and gkpi by using the Benders’ Decomposition technique for mixed integer programming models

as it is next described.

Imposing the upper protection level requirements

Based on the Farkas’ Lemma, it is possible to replace the second level subproblems of model (4)–

(8) by linear constraints on the xi variables. Indeed, assuming that values yi in a congruent table

are continuous numbers, the two LP models in conditions (5)–(7) can be rewritten in their dual

format. More precisely, by Duality Theory in Linear Programming (see, for example, Wolsey [24]):

max {yp : (3) holds }
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min
∑
i∈I

wixi

subject to: ∑
i∈I mij(baic+ rixi) = bj for all j ∈ J

xi ∈ {0, 1} for all i ∈ I

and, for all p ∈ P and all k ∈ K:

∑
i∈I mijf

kp
i = bj for all j ∈ J

lbk
i ≤ fkp

i ≤ ubk
i for all i ∈ I

baic+ rixi − ri ≤ fkp
i ≤ baic+ rixi + ri for all i ∈ I

∑
i∈I mijg

kp
i = bj for all j ∈ J

lbk
i ≤ gkp

i ≤ ubk
i for all i ∈ I

baic+ rixi − ri ≤ gkp
i ≤ baic+ rixi + ri for all i ∈ I

fkp
p ≥ uplkp

gkp
p ≤ lplkp

fkp
p − gkp

p ≥ SPLk
p.

Figure 3: Basic ILP model for Controlled Rounding.

is equivalent to

min
∑
j∈J

γjbj +
∑
i∈I

[α1
i ubk

i + α2
i (baic+ rixi + ri)− β1

i lb
k
i − β2

i (baic+ rixi − ri)]

subject to
α1

p + α2
p − β1

p − β2
p +

∑
j∈J mpjγj = 1

α1
i + α2

i − β1
i − β2

i +
∑

j∈J mijγj = 0 for all i ∈ I \ {p}
α1

i ≥ 0 for all i ∈ I
α2

i ≥ 0 for all i ∈ I
β1

i ≥ 0 for all i ∈ I
β2

i ≥ 0 for all i ∈ I
γj unrestricted in sign for all j ∈ J,





(9)

Because of (9) and [ai : i ∈ I] is a consistent table, we have

∑
j∈J

γjbj +
∑
i∈I

(α1
i ai + α2

i ai − β1
i ai − β2

i ai) =
∑
i∈I

∑
j∈J

γjmijai +
∑
i∈I

(α1
i + α2

i − β1
i − β2

i )ai = ap.
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Hence the above LP model can be rewritten as

ap + min
∑
i∈I

(α1
i UBk

i + α2
i (baic+ rixi + ri − ai) + β1

i LBk
i + β2

i (ai − baic − rixi + ri))

subject to α1
i , α

2
i , β

1
i , β

2
i , γj satisfying (9).

From this observation, condition (5) can be now written as:

∑
i∈I(α

1
i UBk

i + α2
i (baic+ rixi + ri − ai) + β1

i LBk
i + β2

i (ai − baic − rixi + ri)) ≥ UPLk
p

for all α1
i , α

2
i , β

1
i , β

2
i , γj satisfying (9).

In other words, the last system defines a family of linear constraints, in the x-variables only,

representing condition (5) which concerns the upper protection level requirement for sensitive cell

p and attacker k.

Notice that this family contains in principle an infinite number of constraints, each associated

with a different point [α1
i , α

2
i , β

1
i , β

2
i : i ∈ I; γj : j ∈ J ] of the polyhedron defined by (9). However, it

is well known that only the extreme points (and rays) of such a polyhedron can lead to undominated

constraints, i.e., a finite number of such constraints is sufficient to impose the upper protection

level requirement for a given sensitive cell p and a given attacker k.

Imposing the lower protection level requirements

In a similar way, the optimization problem in (6) is:

−max {−yp : (3) holds } ,

which, by the Duality Theory, is equivalent to

−min
∑
j∈J

γjbj +
∑
i∈I

[α1
i ubk

i + α2
i (baic+ rixi + ri)− β1

i lb
k
i − β2

i (baic+ rixi − ri)]

subject to
α1

p + α2
p − β1

p − β2
p +

∑
j∈J mpjγj = −1

α1
i + α2

i − β1
i − β2

i +
∑

j∈J mijγj = 0 for all i ∈ I \ {p}
α1

i ≥ 0 for all i ∈ I
α2

i ≥ 0 for all i ∈ I
β1

i ≥ 0 for all i ∈ I
β2

i ≥ 0 for all i ∈ I
γj unrestricted in sign for all j ∈ J.





(10)

As it was done before, the above linear program can be rewritten as

−ap −min
∑
i∈I

(α1
i UBk

i + α2
i (baic+ rixi + ri − ai) + β1

i LBk
i + β2

i (ai − baic − rixi + ri))
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subject to α1
i , α

2
i , β

1
i , β

2
i , γj satisfying (10).

From this observation, condition (6) can be now written as:

∑
i∈I(α

1
i UBk

i + α2
i (baic+ rixi + ri − ai) + β1

i LBk
i + β2

i (ai − baic − rixi + ri)) ≥ LPLk
p

for all α1
i , α

2
i , β

1
i , β

2
i , γj satisfying (10).

In other words, the last system defines a family of linear constraints, in the x-variables only,

representing condition (6) which concerns the lower protection level requirement for sensitive cell

p and attacker k.

Imposing the sliding protection level requirements

As to the sliding protection level for sensitive cell p and attacker k, the requirement is that

SPLk
p ≤ max{yp : (3) hold }+ max{−yp : (3) hold }.

Again, by LP Duality, this condition is equivalent to

SPLk
p ≤

min{∑j∈J γjbj +
∑

i∈I [α
1
i ubk

i + α2
i (baic+ rixi + ri)− β1

i lb
k
i − β2

i (baic+ rixi − ri)] : (9) holds }+

min{∑j∈J γjbj +
∑

i∈I [α
1
i ubk

i + α2
i (baic+ rixi + ri)− β1

i lb
k
i − β2

i (baic+ rixi − ri)] : (10) holds }.

Therefore, the feasibility condition can now be formulated by requiring

SPLk
p ≤

∑
j∈J(γj + γ′j)bj+

∑
i∈I [(α

1
i + α′1i )ubk

i + (α2
i + α′2i )(baic+ rixi + ri)− (β1

i + β′1i )lbk
i − (β2

i + β′2i )(baic+ rixi − ri)]

for all α1, α2, β1, β2, γ satisfying (9) and for all α′1, α′2, β′1, β′2, γ′ satisfying (10),

or, equivalently,

∑
i∈I(α

1
i + α′1i )UBk

i + (α2
i + α′2i )(baic+ rixi + ri − ai)+

(β1
i + β′1i )LBk

i + (β2
i + β′2i )(ai − baic − rixi + ri) ≥ SPLk

p

for all α1, α2, β1, β2, γ satisfying (9) and for all α′1, α′2, β′1, β′2, γ′ satisfying (10).

Overall model

Figure 4 summarizes an alternative model to (4)–(8) with only the 0-1 variables. The inequalities in

the model are called capacity constraints in analogy with similar constraints introduced in Fischetti

and Salazar [13] for the Cell Suppression Methodology to enforce a sufficient “capacity” of certain
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min
∑
i∈I

wixi

subject to: ∑
i∈I mij(baic+ rixi) = bj for all j ∈ J

xi ∈ {0, 1} for all i ∈ I

and, for all p ∈ P and all k ∈ K:

∑
i∈I

α1
i UBk

i + α2
i (baic+ rixi + ri − ai) + β1

i LBk
i + β2

i (ai − baic − rixi + ri) ≥ UPLk
p

for all α1, α2, β1, β2, γ satisfying (9)

∑
i∈I

α′1i UBk
i + α′2i (baic+ rixi + ri − ai) + β′1i LBk

i + β′2i (ai − baic − rixi + ri) ≥ LPLk
p

for all α′1, α′2, β′1, β′2, γ′ satisfying (10)

∑
i∈I

(α1
i + α′1i )UBk

i + (α2
i + α′2i )(baic+ rixi + ri − ai) +

(β1
i + β′1i )LBk

i + (β2
i + β′2i )(ai − baic − rixi + ri) ≥ SPLk

p

for all α1, α2, β1, β2, γ satisfying (9) and

for all α′1, α′2, β′1, β′2, γ′ satisfying (10).

Figure 4: Second ILP model for Controlled Rounding.

cuts in the network representation of problem on 2-dimensional tables with marginals. Intuitively,

the capacity constraints force to modify a sufficient number of cell values whose positions within the

table and contributions to the overall protection are specified by the dual variables (α, α′, β, β′, γ)

of the attacker subproblems.

The overall model is appropriate for being solved within a branch-and-cut framework. Indeed,

the advantage of model in Figure 4 when compared to model in Figure 3 it that the first one

contains only the 0-1 variables, which are order of the number of cells. At a disadvantage one can

observe that it has a huge number of constraints, one for each (extreme) point of (9) and (10).

Nevertheless, not all these constraints are necessary from the beginning of the resolution and, given

a pattern [x∗i : i ∈ I], one can generate a most violated inequality from these families by solving a

linear program. More precisely, given a (possibly fractional) pattern [x∗i : i ∈ I], to check if there

is a violated capacity constraint not yet generated, one has to solve the two linear programs which
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maximize and minimize yp, respectively, subject to (3) for all sensitive cell p and all attacker k. If

a protection level requirement does not hold, then the dual variables of the corresponding linear

programs define a violated capacity constraint. Hence, it is not necessary to work in practice

with the feasible regions (9) and (10), which would imply a large number of unnecessary variables.

On the contrary, the implementation of the described separation procedure can be done directly

with the primal version of the attacker problems, working only with the dual variables [γj : j ∈ J ].

Indeed, each extreme point of (9) (resp. (10)) has at most one of the four components α1
i , α

2
i , β

1
i , β

2
i

at a non-zero value for each cell i, and this non-zero value can be computed using [γj : j ∈ J ] and

the equation in (9) (resp. (10)).

In practice an important observation is that we can fix some variables in a preprocessing: xi = 1

if baic < lbk
i and xi = 0 if daie > ubk

i . Moreover, we can also strengthen a generated capacity

constraint
∑

i∈I δixi ≥ δ0 with δi ≥ 0 for all i ∈ I (thus δ0 > 0) by redefining the left-hand side

coefficients δi := min{δi, δ0} because xi ∈ {0, 1}. Special cases of these stronger inequalities are

the trivial fixings: xi = 1 if UPLk
i > daie − ai and xi = 0 if LPLk

i > ai − baic, arising when there

is one i ∈ I with δi 6= 0.

Another important observation to make the algorithm works on large instances is the following.

Not all the attacker subproblems should be solved to check the protection levels requirements.

Indeed, one can arrange the attacker problems to be solved in a list L sorted by decreasing

protection levels. The first subproblem is taken from L and solved with an LP-solver with a

limit in the objective function equal to the protection level. If the limit is achieved then the

protection level is attained even if we have not computed the exact optimal value. Otherwise the

dual values define a violated capacity constraints. In all cases, the primal solution of the solved

attacker subproblem (which is a feasible pattern) is used to check other protection levels for this

attacker, and the correspondent subproblems are removed from L when they are satisfied. The

next subproblem to be taken from L is the one associated to the protection level close to be

satisfied by the last primal solution (ties are broken by considering the order in the list), and it is

solved with the primal-simplex LP-solver. In this way, many attacker subproblems do not need to

be solved, and when a subproblem must be solved then the LP-solver will benefit from a previous

good primal solution and from the fact that the objective value is limited by the protection level.

This elaborated procedure is very important to reduce the computational effort to generate the

violated cuts, which is similar in a sense to solve the auditing phase and therefore it could be a

time-consuming task (see, e.g., Duncan, Fienberg, Krishnan, Padman and Roehrig [7]).
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3.2 Dealing with infeasibility

The version of the Controlled Rounding methodology modeled in the previous section is known

as zero-restricted, and can lead to an infeasible optimization problem as observed by Causey, Cox

and Ernst [2]. This is due to the strong constraints (1), and this section presents a way of relaxing

such conditions to possibly find a congruent table to be released.

When the zero-restricted problem is infeasible, the statistical office is still interested in rounding

the cell values and producing a congruent table protected according to the given protection level

requirements. To this end, we look for congruent tables where a cell value is allowed to be rounded

to a multiple of the base number different than the closest ones. To keep controlled the distance of

a rounded value vi from the original value ai, we solve a sequence of problems where |vi−ai| ≤ sri

for all i ∈ I and for a give parameter s. Starting with s = 2, the parameter s is increased by

one unit through the sequence. The problem solved at each iteration can be modeled in a similar

way as done for the zero-restricted version. Indeed, instead of one 0-1 variable xi, we now need

two integer variables associated to each cell i: a variable x+
i giving the number of roundings below

baic, and a second integer variable x+
i giving the number of roundings over baic. The variable x−i

can assume values in {0, 1, . . . , s} and the variable x+
i can assume values in {0, 1, . . . , s−1}. Since

the value of s will be published by the statistical office when publishing the output to maximize

the utility of the released data, the attacker problems are defined by:

My = b
baic − rix

−
i + rix

+
i − sri ≤ yi ≤ baic − rix

−
i + rix

+
i − sri for all i ∈ I

lbk
i ≤ yi ≤ ubk

i for all i ∈ I.



 (11)

Then the problem of finding a protected pattern (if any exists) can be modeled in a similar way

as done in Figures 4 and 3, which correspond to the problem when s = 1. For simplicity, we will

not go into more details.

Clearly, a disadvantage of this way of escaping from the infeasibility of the zero-restricted

version is the number of iterations that this method requires and the complexity of the integer

programming problem of each iteration. The next section presents a simpler alternative leading

to a new methodology in Statistical Data Protection.

4 Cell Perturbation Methodology

The main disadvantage of the Controlled Rounding methodology is that a protected pattern does

not always exist due to the tight constraints (1). Therefore, a different way of ensuring the existence

of protected patterns is to relax conditions (1) in the controlled rounding model (e.g., consider the
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linear programming relaxations of models in Figures 3 and 4) and to look for a congruent table

v = [vi : i ∈ I] such that

vi ∈ [baic . . . daie]. (12)

where baic and daie are given in advance from the statistical office such that baic ≤ ai ≤ daie.
These extreme values can be defined as the nearest numbers to ai which are multiples of a given

number (i.e., defined as in the standard Controlled Rounding methodology from a given base

number), but they can also be the two values within a given difference with respect to ai (i.e.,

baic := ai − ti and daie := ai + ti for a given base number ti > 0). Figure 2 (d) shows a possible

Cell Perturbation pattern for the nominal table in Figure 1. Table v is then a pattern in the Cell

Perturbation Methodology and the novelty with respect to the controlled rounding is that now vi

can be any value between the two extremes of the interval [baic . . . daie]. As in the Controlled

Rounding methodology, the loss of information of a cell i could be defined to be proportional to

|vi − ai|, and the “loss of information” of a pattern is the sum of the loss of information of all the

cells.

Obviously, if all constraints (1) are removed and no new one is added to the continuous relax-

ation of a model minimizing the non-linear function
∑

i∈I |vi − ai| over the feasible region defined

by (5)–(8), then the valid pattern with minimum loss of information is the nominal table a. A

way to avoid this disappointing solution is to keep some constraints from (1) (for example, the

one concerning the sensitive cells) or simply require that the published values in each sensitive

cell must be equal to some given values (for example, vp = daie for all p ∈ P ). Practitioners in

statistical offices prefer another way of avoiding the nominal table as published table: it consists

in defining a different objective function. Indeed, by considering the objective as the distance

between each published value vi and the value in {baic, daie} closest to ai we get the same criteria

used in the classical Controlled Rounding methodology, and allow the objective function to be

linear on the variables xi.

Let ri := daie−baic a (possibly) known information for attackers. Then the attacker problems

associated with attacker k are now exactly the same as in the Controlled Rounding Methodology,

i.e.
My = b

vi − ri ≤ yi ≤ vi + ri for all i ∈ I

lbk
i ≤ yi ≤ ubk

i for all i ∈ I.

As in the Controlled Rounding methodology, a necessary (but not sufficient) condition for feasibility

is that maxk∈K{SPLk
i ,UPLk

i + LPLk
i } ≤ 2ri for all i ∈ I.

Mathematical models for the underlying optimization problem in this Cell Perturbation Method-
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ology are simply given by the continuous relaxations of the (Mixed) Integer Linear Programming

models given in the previous section. Indeed, the published value can be modeled by vi := baic+rixi

where xi is now a continuous variable in [0, 1]. This output must be an additive table, which is

guaranteed by constraints

∑
i∈I mij(baic+ rixi) = bj for all j ∈ J

Other constraints in Figure 3 (or in Figure 4), except the integrality on the xi variables, impose

the existence of additive tables to guarantee the protection level requirements.

As described for solving the classical Controlled Rounding Problem, a branch-and-cut technique

is appropriated for solving this model with an exponential number of constraints. Hence, we do

not need to solve the full master model, but a sequence of relaxed problems. Then violated

constraints (if any) can be easily generated by solving the attacker subproblems. This phase of

finding potential violated constraints for a given fractional solution of the relaxed master problem

is known as separation problem.

Clearly, the capacity constraints cannot be strengthened as mentioned in the classical Con-

trolled Rounding Methodology. Still, relevant constraints in practice are the following trivial

inequalities:
UPLk

p − bapc − rp + ap

rp

≤ xp ≤
rp − LPLk

p − bapc+ ap

rp

for all sensitive cell p, which are capacity constraints
∑

i∈I δixi ≥ δ0 when δi = 0 for all i ∈ I \{p}.
In particular, the left-hand side inequality arises when there is one positive dual variable which is

α2
p = 1 and the right-hand side inequality arises when there is one positive dual variable which is

β2
p = 1. Note that both are solutions of (9) and (10), respectively. Other trivial valid constraints

are
lbk

i − baic
ri

≤ xi ≤ ubk
i − baic

ri

In our implementation we have generated all these bound constraints in the initial step of our

algorithm, hence these trivial constraints do not appear as violated constraints while solving the

separation problems.

5 Computational Results

We have implemented the branch-and-cut algorithm described in Section 3 for solving the classical

Controlled Rounding Problem, and the cutting-plane algorithm described in Section 4 for solving

the new Cell Perturbation Problem. The implementation has been done in ANSI C using the
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Microsoft Visual C 6.0 compiler and the branch-and-cut framework of CPLEX 8.0. The experi-

ments have been executed on a personal computer with a PC Pentium IV 2.5 Ghz under Microsoft

Windows XP.

Both codes succeeded in finding optimal patterns for a collection of benchmark instances re-

ceived from the “Department for Work and Pensions”, United Kingdom. This collection of in-

stances contains real-world data containing confidential information, and were provided for this

research under a confidentiality agreement. Therefore the data are not available for other re-

searchers. Still, we can mention that they concern with neighbourhood statistics considering a

hierarchical subdivision of Great Britain: 10524 wards, 408 local authorities, 55 counties, 11 gov-

ernment office regions, 3 countries and 1 kingdom. The data contains different information for each

of these 11002 groups. In particular, the larger table corresponds to the Income Support at August

2000 and consists of 20 values for each group, some being partial marginal values of others. This

large table is modelled through 220040 cells and 75572 links, and both algorithms found optimal

pattern in less than one minute. A relevant feature of the tables in our collection is that the pattern

found by both algorithms was the same in all cases. In other words, the continuous relaxation of

the integer models produced an integer solutions in all the instances. To explain this result we

illustrate the structure of our real-world table with the dummy data in Figure 5, where an original

and a rounded table with a similar structure to our real-world tables are given. The column named

“total” is the sum of “male” and “female”, but also the sum of “young” and “adult”, and the sum

of “thin” and “fat”. Moreover the row “England” is the sum of “North East”,...,“South West”,

and the row “Great Britain” is the sum of “Wales”, “Scotland” and “England”. Then the round-

ing problems can be modelled as finding min-cost flow circulations on three capacitated networks

(sex, age and weight) plus the additional constraints that the flow of some arcs (corresponding to

the marginal cells) must coincide. An optimally rounded table of the original table with 220040

cells and 75572 equations was found by our branch-and-cut algorithm in 21 seconds of a personal

computer Pentium 2533 Mhz.

The second example refers to a table that appeared in the 2001 Scottish Census of Population.

For this data, various pre-tabulation disclosure control techniques were considered sufficient to

protect the confidentiality of the respondents. So there is no need to apply a further stage of

rounding for confidentiality protection. Nevertheless, they form an interesting example of data (a)

that are close in form to unprotected data, and (b) that are also in the public domain, so they

can be used to test our algorithm. The table we used was of age (20 levels) by sex (2 levels) by

living arrangements (7 levels), together with a number of marginal tables. Considering geography,
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Unrounded data total male female young adult thin fat
North East 60593 29225 31368 13856 46737 34565 26028
North West 174414 78129 96285 25673 148741 3432 170982
Yorkshire and Humberside 108769 46119 62650 2342 106427 32223 76546
East Midlands 93346 43201 50145 23443 69903 23434 69912
West Midlands 131817 61046 70771 23878 107939 432 131385
East 107060 47376 59684 24532 82528 34233 72827
London 110811 49053 61758 17635 93176 3423 107388
South East 123359 50949 72410 34223 89136 4567 118792
South West 119863 44718 75145 35980 83883 56356 63507
Wales 95388 49579 45809 34989 60399 6454 88934
Scotland 124678 61327 63351 36789 87889 5643 119035
England 1030032 449816 580216 201562 828470 192665 837367
Great Britain 1250098 560722 689376 273340 976758 204762 1045336

Rounded data (ri = 5) total male female young adult thin fat
North East 60595 29225 31370 13855 46740 34565 26030
North West 174415 78130 96285 25675 148740 3430 170985
Yorkshire and Humberside 108770 46120 62650 2340 106430 32225 76545
East Midlands 93345 43200 50145 23445 69900 23435 69910
West Midlands 131815 61045 70770 23875 107940 430 131385
East 107060 47375 59685 24530 82530 34235 72825
London 110810 49055 61755 17635 93175 3420 107390
South East 123360 50950 72410 34225 89135 4570 118790
South West 119860 44715 75145 35980 83880 56355 63505
Wales 95390 49580 45810 34990 60400 6455 88935
Scotland 124675 61325 63350 36790 87885 5640 119035
England 1030030 449815 580215 201560 828470 192665 837365
Great Britain 1250095 560720 689375 273340 976755 204760 1045335

Figure 5: Dummy table with a similar structure of our real-world data.

there were 32 local authorities (LADs), within which were 1176 wards. The total number of cells

was 431613, and the number of equations was 105960. Each geographical area has 80 equations,

and there are 1209 geographical areas (1176 wards + 32 LADs + 1 country). The full problem

in its zero-restricted form was difficult to solve with ri = 5: no solution was found within two

days. The optimisation problems were not solved even when g was increased to 5. However, if the

9240 equations representing relationships between geographical areas were removed, separate zero-

restricted solutions for all geographical areas and levels were found in 17 seconds on a computer

Pentium 2533 Mhz. Once the control-rounded tables for the wards were found, these could be

added to obtain control-rounded tables for LADs and for the whole of Scotland that are consistent

with the control-rounded ward tables.
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6 Avoiding biased solutions

The aim of many statistical offices is to provide detailed statistics for small neighbourhoods with

target populations of 200–250 people. Information is provided for these small areas not only for

their own interest, but also so that the neighbourhoods can be used as building blocks from which

to construct an approximation to any larger area, A. In order to produce the frequency tables for

the large area, A, it is then simply necessary to add the tables for the individual neighbourhoods

contained within A. However, it is important when doing this that the perturbations made when

rounding the frequencies for each small area do not accumulate into very large resulting pertur-

bations for the table for area A. In order to reduce the chances of this happening, the distortions

made in random rounding are often specified in such a way that they introduce no bias: the

stochastic (i.e. random) process is defined so that the expectation of the rounded frequency in

any cell is equal to the original frequency, E(yi) = ai, for all ai in the original table. Expectation

is used here in the usual statistical sense to mean the average over a large number of realizations

of the stochastic process concerned. Note that this provides no guarantee about what happens in

any individual table. It just that in the very long run (i.e. in any aggregate statistic consisting of a

sum of several individual rounded tables), we are not likely to introduce any substantial distortions

in the table frequencies.

It is possible to define bias in a systematic way for random rounding, since the protection mech-

anism involves a stochastic process. It is not immediately apparent how to define bias for controlled

rounding, since in many implementations it does not involve any random elements. However, just

as it is possible to view the deterministic mechanisms used in congruential pseudo-random number

generators as stochastic processes, we can apply a similar approximation to controlled rounding. It

is a complex process whose properties we can study statistically as if it were a stochastic process.

It is in this sense that we specify that ideally the process is approximately unbiased.

We carried out a statistical analysis on the perturbations in the controlled rounding for each

original frequency in one of our large datasets from the Scottish Census (we also got similar results

for some other datasets). Table 1 shows the obtained proportions of cells rounded up to the

next multiple of the rounding base for each original frequency, for the original algorithm (i.e.,

with the loss of information defined by (2), and with an alternative objective function (13), to be

defined next. For each value ai ∈ {0, . . . , 20} the second column in Table 1 shows the number

of occurrences of this value in the table, and the third column shows the expected proportion of

values rounded up for an unbiased solution.

From the fourth column, it is clear that there is a substantial bias in the rounding for all
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ai occurrences Expected using (2) using (13)
0 131,831 0.0 0.00 ± 0.000 0.00 ± 0.000
1 33,241 0.2 0.04 ± 0.002 0.14 ± 0.004
2 19,535 0.4 0.34 ± 0.007 0.41 ± 0.007
3 13,934 0.6 0.83 ± 0.006 0.66 ± 0.008
4 11,406 0.8 0.99 ± 0.002 0.85 ± 0.007
5 9,476 0.0 0.00 ± 0.000 0.00 ± 0.000
6 8,561 0.2 0.02 ± 0.003 0.13 ± 0.007
7 7,412 0.4 0.26 ± 0.010 0.41 ± 0.011
8 6,820 0.6 0.81 ± 0.010 0.66 ± 0.011
9 6,250 0.8 0.99 ± 0.002 0.85 ± 0.009
10 5,466 0.0 0.00 ± 0.000 0.00 ± 0.000
11 4,906 0.2 0.01 ± 0.003 0.12 ± 0.009
12 4,560 0.4 0.26 ± 0.010 0.39 ± 0.014
13 4,076 0.6 0.82 ± 0.012 0.67 ± 0.015
14 3,870 0.8 0.99 ± 0.003 0.86 ± 0.011
15 3,660 0.0 0.00 ± 0.000 0.00 ± 0.000
16 3,320 0.2 0.02 ± 0.004 0.11 ± 0.011
17 3,180 0.4 0.24 ± 0.015 0.40 ± 0.017
18 2,985 0.6 0.83 ± 0.014 0.66 ± 0.017
19 2,913 0.8 0.99 ± 0.003 0.87 ± 0.013
20 2,681 0.0 0.00 ± 0.000 0.00 ± 0.000

Table 1: Proportion of cells rounded up to the next multiple of the rounding base

frequencies when using objective function (2), but especially for original frequencies immediately

adjacent to integer multiples of the rounding base. The figures given after ± are the half widths of

95% confidence intervals on the proportions (allowing for the sampling error as a result of carrying

out a finite number of numerical experiments). These are generally very narrow.

There is tendency for the controlled rounding driven by the objective function (2) to round to

the closest multiple of the rounding base much more frequently than an unbiased rounder would.

In this respect, controlled rounding with objective function (2) behaves in a fashion intermedi-

ate between standard unbiased random rounding, and ordinary deterministic rounding (in which

frequencies always round to the nearest multiple of the rounding base, e.g. 3, 4, 6 and 7 always

round to 5, etc). The bias found in this version of controlled rounding is unlikely to be important

in almost all practical applications, since it would be unlikely that an undue preponderance of

frequencies would fall in the areas immediately above or below the rounding base.

However, we considered whether changes in the method could be made to reduce this type

of bias. Cox [4] discussed procedures for unbiased controlled rounding for 2-way tables. A more

accurate method to guarantee this statistical property in the solutions provided by the described
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algorithm consists on replacing the objective function (2) by

δ′(v, a) := δ(v, ξ(a)) =
∑
i∈I

|vi − ξ(ai)| (13)

where ξ(a) = [ξ(ai) : i ∈ I] is a vector of random variables derived from a = [ai : i ∈ I]. So

the rounding procedure is now aiming to be as close as possible to ξ(a) rather than to a itself,

where ξ(ai) is a random transformation of ai that takes the form of a map from {nri + 1, nri +

2, nri + 3, ..., nri + ri − 1} onto itself for all integer n. We regard the transformation from a to

ξ(a) (using objective function (2)) as a stochastic mechanism with probabilities of rounding up

given in the 4th column of Table 1, and as we are using the same algorithm to go from ξ(a) to

v, they apply also to that transformation. We then obtain a matrix of transition probabilities

from a to v that would result in the required probabilities of rounding up for the overall process.

In effect what we are now doing is making two transformations, first a 7→ ξ(a), then ξ(a) 7→ v,

where the second transformation is carried out by solving the controlled rounding problem using

the same form of objective function as in (2) but with ξ(a) replacing a, as in (13). In order to

determine what is the appropriate transformation from a 7→ ξ(a), it is necessary, of course, to first

determine what the bias of the standard procedure is for the particular data set being rounded.

It can be done in a preliminary stage using the standard controlled rounding procedure. This

approach is only possible when the dataset involved provides many occurrences in which the same

original frequencies are rounded, from which the statistical properties of the controlled-rounder in

the specific context can be approximately estimated. If the dataset is too small for this, then the

only guide available is general experience of controlled rounding of other datasets. It remains to

be seen what consistency in statistical properties of the rounding perturbations occurs in different

datasets, as further experience is accumulated. The result of this exercise is that the bias is

substantially reduced (see Table 1). For almost all practical purposes, the bias properties of the

rounding procedure with objective function (13) are adequate.

Figure 6 gives a geometrical interpretation to replace the classical definition of lost of infor-

mation in (2) by the new definition in (13). The black dots represent tables with rounded values,

and the ones inside the polytope in the figure represent additive and protected solutions. Given

an unrounded table a, represented by a white dot in the figure, the classical loss of information

(2) leads the optimization procedure to generate the biased table v. Instead, by first generating

the random table ξ(a) through the transition probabilities, it is possible to generate the unbiased

table w in a second run of the procedure. Note that ξ(a) is not necessary additive, as it occurs
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Figure 6: Interpretation of steering the mathematical model with the two objective functions

with the table φ(a) generated as follows:

φ(ai) =

{
baic with probability (daie − ai)/ri

daie with probability (ai − baic)/ri

Clearly φ(a) is unbiased and can be very easily generated, but it has the disadvantage that it is

not additive neither protected. Using the mathematical model instead, the generated solution v

is always additive and protected, but it is biased if (2) was used. Improving the mathematical

model with the double transformation procedure, our computational results have shown that the

generated table w is also almost unbiased, thus satisfying the statistical office wishes. We also

conducted experiments where we first generated φ(a) and second run the algorithm to generate a

solution u closest to φ(a), but u resulted to have worse statistical features when compared with w.

7 Conclusions

We have addressed the classical Controlled Rounding Methodology integrated with the protection

level requirements. This paper is the first work presenting a mathematical model for the under-

lying optimization problem considering both the minimization of the loss of information and the

protection level guarantees. It allows lower, upper and sliding protection levels for protecting a

subset of sensitive cells, each one against a set of intruders or a coalition of intruders with different

information. There is not assumption on the structure of the tabular data, thus the presented

proposal can be applied to k-dimensional tables, hierarchical and linked tables. A first model is

in Mixed Integer Programming with a large number of continuous variables, and a second model
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with one binary variable for each cell is obtained through Benders’ Decomposition. A branch-

and-cut algorithm is presented for solving this second model. An alternative methodology, named

Cell Perturbation, is proposed to find solution when the classical Controlled Rounding problem is

infeasible. The paper has also addressed the critique about the bias implicit in the optimal solu-

tions, and have introduced a two-level procedure to generate unbiased solutions. Computational

experiments on real datasets shows the performance of the proposed algorithms.
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